By Jared Alder, MS
There has been a big focus in domestic wastewater on the removal of phosphorus and the potential for excess phosphorus to cause eutrophication in receiving water. Treatment facilities of all different shapes and sizes with inadequate phosphorus treatment technologies have the potential for excess phosphorus release.
The removal of phosphorus from wastewater can be performed using physico-chemical methods, biological treatment, and/or combinations of both. Physico-chemical processes of phosphorus removal have been widely used. Such physico-chemical processes are generally effective, reliable, and do need a lot of large capital equipment; however, they are not without limitations. For example, adding chemicals to treatment processes can impact the pH of the treatment process, thus resulting in the need for additional chemicals to adjust the pH before the treated water can be discharged. In some cases, because of the chemical usage, a chemical sludge can be created and there may need to be additional treatment steps for removing the sludge.
The most common chemical phosphorus removal options utilize dosing metal salts—such as ferric chloride as part of pre-treatment—into activated sludge reactors or as part of the secondary clarifier process. Ferric chloride (or similar metal salts) precipitates phosphorus in the wastewater and the resulting solids residuals are removed either by settling under gravity or by filtration. The subsequent precipitates may be rich in phosphorus but, since it is chemically bound, it can make recovering the phosphorus challenging—which presents a disadvantage over Enhanced Biological Phosphorus Removal (EBPR) systems because it reduces the economic benefits of the phosphorus-rich sludge.
Removal rates for phosphorus are typically proportional to the mass of the chemical added, which influences the amount of extra solids produced; therefore, a balance between the two is critical. Phosphorus effluent concentrations of 1 mg/L or greater can generally be achieved by gravity settling. Techniques including filtration and tertiary-ballasted flocculation are sometimes combined with metal-salt dosing to achieve lower phosphorus levels, even down to concentrations of < 0.50 mg/L.
Since chemical dosing is generally reliable and widely accepted, it is the most commonly used treatment option.
Related Posts
Where Did the Water Go?
By Jared Alder, MS In England, it is estimated that around 700 million gallons of water—the equivalent of 1,200 Olympics–size swimming pools—is lost every day to leaks in the country’s vast water system. Often the water just rises out to the pavement and runs down the road. Utilities spend countless hours and a great deal of money and other resources trying to locate the sources of leaks, often tearing up roads multiple times in
This Week in Ag #33
In commodity crop production, we talk a lot about bushels per acre. Because that’s how farmers get paid. But what exactly does bushels per acre mean? A bushel is the unit of measure we use in the USA (other parts of the world use tons or metric tons) to calculate yield, verify shipments and set pricing standards for crops such as corn, soybeans, wheat, canola, rice and sorghum. There’s a good chance your grandparents had a bushel basket laying around their house, garage, or barn. If you were to fill that basket to the brim with corn, you’d have one bushel’s worth.
This Week in Ag #53
“They’re not making any more of it” has long been a popular response among farmers justifying a land purchase (or in the case of retirees or heirs, for holding on to it). But now it seems, they’re making less of it. A lot less. Like 20 million acres less. That’s about the size of Maine.