An In-Depth Investigation of Bioremediation and Biological Factors Involved in Reducing Sludge at a Municipal Wastewater Treatment Facility Lagoon System
Heather Jennings, PE, Sr. Project Engineer, Probiotic Solutions®
Abstract
In this study, the operators of a municipal wastewater treatment facility with 4 lagoons had determined that their 2 primary lagoons—10-foot-deep, with 25-million-gallon holding capacity each—had reached sludge depths of 5–7 feet, putting the lagoons at risk of upset and seriously impacting the facility’s wastewater processing capacity.
A bioremediation plan was implemented that included the use of a biostimulant to support microbial reduction of the organic solids in the system. Sludge judging was performed for the 2 primary lagoons at baseline and at quarterly intervals over a one-year period to measure the impact of the bioremediation plan on sludge reduction. This was supplemented with ATP analysis to identify live biomass energy levels and DNA analysis to identify presence of and changes in relative representation of bacteria species at various stages of plan implementation. It also documented bacteria response to changes in influent due to episodic loading from industry, including a near-septic event. A modified sludge judge was used to collect samples from each of 3 layers of the lagoon: bottom (sludge), middle (interstitial), and top (supernatant).
The results of the ATP and DNA analyses pointed out the often-misunderstood fact that wastewater treatment facility lagoon sludge is not inert: it is the most biologically active layer of the water column and can be efficiently controlled and reduced through proper bioremediation interventions. The ATP analyses also documented the lasting effects (3 months) of an episodic toxic loading on the 2 lagoons. The study reports the 47 most abundant bacteria species present at various quarterly samples and at each of the 3 water/sludge layers. Discussion is provided of the roles several of these bacteria species play in the bioremediation process.
At the end of the one-year bioremediation plan, sludge depth for the 2 lagoons had been reduced by an average of 45%, with sludge depth at some sample points completely reduced to zero. This represented 17,800 dry tons of sludge that did not need to be mechanically removed and hauled to a disposal location, a potential savings to the treatment facility of over $6 million.
Complete the form below to download/read the complete white paper.
(32 pages, 34 figures, 37 tables)
Related Posts
This Week in Ag #38
When you’re carving your Halloween pumpkins this week, be sure to thank a bee. That’s because pumpkins are not self-pollinating plants. Unlike cotton and soybeans, where pollen produced within a flower fertilizes the ovary of the same flower on the same plant, pumpkins have specific male and female flowers across their vines. So they need bees to carry pollen between the flowers. Pumpkin growers will rent bee colonies during the growing season to ensure better pollination and higher yields.
It All Has to Start With the Soil
The Soil Health Institute has released a 60-minute documentary, Living Soil, that captures the history — and significance — of the soil health movement. Our soils support 95 percent of all food production, and by 2060, our soils will be asked to give us as much food as we have consumed in the last 500...
This Week in Ag #40
I’ll never forget the sage words an old farmer told me when I announced my intention to start farming in the late 1990s. I explained that I was not leaving my marketing job and that I was also doing a fair amount of freelance consulting work. He told me, “It’s funny how many other jobs you need...