
The research, titled “Bioactivity of Humic Acids Extracted from Shale Ore: Molecular Characterization and Structure-Activity Relationship With Tomato Plant Yield Under Nutritional Stress,” revealed an unprecedented level of molecular characterization made possible by means of ultra-high resolution ion cyclotron mass spectrometry, providing a more comprehensive understanding of individual components of humic substances involved in enhancing plant productivity.
A detailed characterization of chemical composition becomes critical as new government regulations of biostimulant products will require the elucidation of the mode of action in order to supply farmers with effective product claims based on science.
The objective of this study was to investigate in detail the chemical features of humic acids (HAs) extracted from sedimentary ore with the aim of exploring the potential relationship of chemical functions with biostimulant activity and to evaluate the extent to which the priming effect of HAs on tomato plants under nutritional stress was reflected on the yield gains.
The results of this study proved the biostimulant efficacy of humic acid application that improved nutrient use efficiency and at the same time alleviated the nutritional stress condition. All tomato plants treated with humic acids showed faster adaptation to stress conditions, particularly when nutrient deficiency occurred. Plant growth and tomato yield increased when provided with humic acids under low nutritional doses, and tomato fruit quality was improved under all humic acid treatments.
The increased antioxidants production under humic application has been correlated to the presence of specific molecules in the humic extract. These molecules, such as quinones and flavonoids, can act as both antioxidants and pro-oxidants that can trigger the plant defensive system, ultimately leading to a fast and effective response to nutrient deficiency with a consequent enhancement of plant morphology and productivity.
Among the study’s conclusions are that plant pre-conditioning with humic substances might represent an important determinant in the adaptive plant defense response and an effective strategy to improve nutrients management and plant yield.
The complete open-access article is available at https://www.frontiersin.org/articles/10.3389/fpls.2021.660224/full.
Related Posts
BHN Assists St Vincent de Paul Mesa Urban Farm
[et_pb_section bb_built=”1″][et_pb_row][et_pb_column type=”4_4″][et_pb_text _builder_version=”3.8″] The Society of St. Vincent de Paul (SVDP)—with its mission of Feed, Clothe, House, Heal—does a lot of work for the poor and homeless in the Greater Phoenix area, and their many projects include several urban farms that are in proximity to their free dining rooms. As with most of their
This Week in Ag #24
Yellow airplanes were buzzing over Iowa cornfields like bumblebees over zinnias during my drive to Iowa last week. There was a time when Midwest farmers would grind their teeth at the sight of these crop dusters. It usually meant a neighbor was treating a pest problem with a costly, unplanned aerial application. And that pest problem
Water Master Plans
By Heather Jennings, PE When I worked with engineering firms, there were a lot of water master plans being developed. Many of them were updates, as the plans had been around for 5–10 years and needed revision. Some master plans evaluated water and wastewater systems from scratch. All of these were interesting to me due

